Аватар
Алгебра, опубликовано 2018-08-22 19:25:13 by Гость

Сумма квадратов двух последовательных натуральных чисел больше их произведения на 157. Найдите эти числа. Пожалуйста побыстрее и с решением я прошу вас.

Аватар
Ответ оставил Гость

Пусть n, n+1 - последовательные натуральные числа,
тогда n²+(n+1)² - сумма их квадратов,  а    n(n+1) - их произведение.
По условию, сумма квадратов данных чисел на 157 больше их произведения.
Составляем уравнение:
n²+(n+1)²-157=n(n+1)
n²+n²+2n+1-157=n²+n
n²+n-156=0
D=(-1)²+4*1*156=625=25²
n(1)=(-1+25)/2=12
n(2)=(-1-25)/2=-13∉N

n=12
 n+1=12+1=13

Проверка: 12²+13²-157 =12*13
                     144+169-157= 156
                                        156=156 (верно)

Ответ: 12 и 13

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.