Алгебра, опубликовано 2018-08-22 20:35:19 by Гость
Найдите трёхзначное число, кратное 25, все цифры которого различны, а сумма квадратов цифр делится на 3, но не делится на 9. В ответе укажите какое-нибудь одно такое число.
Ответ оставил Гость
Чтобы число делилось на 25, оно должно заканчиваться на 00, 25, 50 или 75. Наше число на 00 заканчиваться не может, поскольку все его цифры должны быть различны. Выпишем все трёхзначные числа, заканчивающиеся на 25, 50 или 75, все цифры которых различны, найдём сумму квадратов их цифр, проверим, делится ли она на 3 и на 9.
Ответ: любое из чисел 125, 175, 275, 725, 825, 875.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.
