Алгебра, опубликовано 2018-08-22 20:45:44 by Гость
В треугольнике АВС угол в - 90 градусов, ВD- высота, АВ равно 2ВD. Докажите, что 3АС равно 4АD
Ответ оставил Гость
Для простоты решения обозначим ВД=х, АД=у, ДС=z .
Тогда АВ=2х .
Высота прямоуг. треуг., опущенная из прямого угла есть среднее пропорциональное между проекциями катетов на гипотенузу, то есть
ВД ² = АД*ДС ---> x²=yz
Из ΔАВД: у²=(2х)²-х²=3х² ---> y=x√3
Катет есть среднее пропорциональное между его проекцией на гипотенузу и самой гипотенузой , то есть
АВ ²=АС*АД ---> (2x)²=(y+z)y=(x√3+z)x√3=3x²+xz√3
4x²-3x²=xz√3 ---> x²=xz√3 ---> z=x²:(x√3)=x:√3
3*AC=3(y+z)=3(x√3+x/√3)=3*(3x+x)/(√3)=4x*√3
4*AD=4y=4*x√3 --->
3*AC=4*AD
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.
