Аватар
Алгебра, опубликовано 2018-08-22 21:15:09 by Гость

Сколько и какие корни имеет уравнение: cos(2x+pi/2)sqrt(10-x^2-1)=0

Аватар
Ответ оставил Гость

Произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из них равен 0, а другой при этом не теряет смысла.

ОДЗ:
{10-x²-1≥0    ⇒  9-x²≥0   _-_[-3]_+_[3]_-_    ⇒  -3≤x≤3

cos(2x+(π/2))=0
2x+(π/2)=(π/2)+πk, k∈Z   
2x=πk, k∈Z
x=(π/2)·k, k∈Z
Найдем корни удовлетворяющие неравенству -3≤x≤3:
-3 ≤ (π/2)·k ≤ 3,  k∈Z;
-2
x=-π/2;  x=0; x= π/2 - корни уравнения.

√(10-х²-1)=0 ⇒  х=-3  или  х=3

х=-3; х=3 - корни уравнения.
О т в е т. -3;-π/2; 0; π/2; 3.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.