Алгебра, опубликовано 2018-08-22 22:33:22 by Гость
В треугольнике АВС из вершин А и В проведены биссектрисы а из вершин С медиана оказалось что точки их попарного пересечения образуют прямоугольный равнобедренный треугольник найдите углы треугольника АВС
Ответ оставил Гость
Пусть I – точка пересечения биссектрис треугольника АВС, а медиана СО пересекает проведенные биссектрисы в точках K и L (см. рис.). Так как
∠AIB = 90° + ½ ∠C > 90°, то в полученном треугольнике KLI угол при вершине I равен 45°. Значит, ∠AIB = 135°, поэтому ∠AСB = 90°. Следовательно, ОС = ОА = OB.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.
