Аватар
Алгебра, опубликовано 2018-08-22 23:01:18 by Гость

Вычислите: tg(П-arcsin(-3/5)) ответы 1)4 2)1 3)3/4 4)-3 5)-3/4sin(2arccos12/13)ответы1)5/132)12/133)60/1694)120/1695)24/13

Аватар
Ответ оставил Гость

Tg(π-arcsin(-3/5))=-tg(arcsin(-3/5)) [формула приведения]
Пусть α=arcsin(-3/5), тогда sin α=-3/5 и нужно найти -tg α
arcsin x∈[-π/2;π/2]. Т.к. sin αДля нахождения тангенса этого угла нужно найти косинус.
сos α=√(1-sin²α)=√(1-9/25)=4/5 (косинус в 4ой четверти положителен)
tg α=sin α/cos α=(-3/5)/(4/5)=-3/4. Отсюда следует, что -tg α=3/4

ОТВЕТ: 3) 3/4

sin(2arccos12/13)=2sin(arccos 12/13)*cos(arccos(12/13) (формула синуса двойного угла)
Пусть α=arccos12/13, тогда cos α=12/13 и нужно найти 2sinα*cosα
arccos x∈[0;π]. Т.к. cos α>0, то α∈[0;π/2] (I четверть)
sin
α=√(1-cos²α)=√(1-144/169)=5/13 (синус в первой четверти положителен)
2*sinα*cosα=2*5/13*12/13=120/169

ОТВЕТ: 4) 120/169

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.