Алгебра, опубликовано 2018-08-22 23:20:08 by Гость

Теплоход прошел 17 км по течению реки на 2 ч быстрее ,чем 75 км против течения. Найти скорость течения,если собственная скорость теплохода равна 32 км/ч Плизз сегодня) нужно

Ответ оставил Гость

Пусть х-Vтечения реки. Vпо теч. (х+32).Vпртив теч. (32-х).
t1(пароход затратил по течению) 17/(х+32).
t2(пароход затратил против теч) 75/(32-х)
По условию t2-t1=2(ч)
Составим уравнение:
75/(32-х) -17/(х+32)=2
75*(32+x)-17*(32-x)=2*(1024-x^2)
2400+75*x-17*(32-x)-2*(1024-x^2)=0
2400+75*x-(544-17*x)-2*(1024-x^2)=0
2400+75*x-544+17*x-2*(1024-x^2)=0
1856+75*x+17*x-2*(1024-x^2)=0
1856+92*x-2*(1024-x^2)=0
1856+92*x-(2048-2x^2)=0
1856+92*x-2048+2x^2=0
-192+92*x+2x^2=0
D=92^2-4*2*(-192)=10000
x1=(√10000-92)/(2*2)=2 км/час скорость реки

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.