Алгебра, опубликовано 2018-08-22 23:38:08 by Гость

|x-5/x+3|≥|x+4/x-6| Помогите решить модуль.

Ответ оставил Гость

ОДЗ: x≠0. Домножим неравенство на |x|>0:
|x^2+3x-5|≥|x^2-6x+4|⇔
(x^2+3x-5)^2≥(x^2-6x+4)^2;
(x^2+3x-5)^2-(x^2-6x+4)^2≥0;
(x^2+3x-5-x^2+6x-4)(x^2+3x-5+x^2-6x+4)≥0;
(9x-9)(2x^2-3x-1)≥0;
решая методом интервалов и вспоминая ОДЗ, получаем

ответ: [(3-√(17))/4;0)∪0;1[∪[(3+√(17))/4;+∞)

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.