Алгебра, опубликовано 2018-08-22 23:46:54 by Гость

В арифметической прогрессии сумма первого и шестого членов равна 11 , а сумма второго и четвертого членов равна 10 . Найти сумму шести членов этой прогрессии.

Ответ оставил Гость

{a1+ a6=11    a2+a4=10
Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d)
a2=a1+d        a4=a1+3d        a6=a1+5d и подставим в систему:
{a1+a1+5d=11        a1+d+a1+3d=10
{2a1+5d=11              2a1+4d=10
Решим систему методом сложения. Умножим первое уравнение на (-1)  и сложим со вторым:
{-2a1-5d=-11    +    2a1+4d=10
-d=-1
d=1
2a1+4=10
a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.)
По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии:
S6=(2·3+5 )/2·6=33      (Sn=(2a1+d(n-1))/2·n)
ответ:33

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.