Алгебра, опубликовано 2018-08-22 23:52:50 by Гость

Решите неравенство: (n+1)! меньше чем (n+64)(n-1)!? если n принадлежит N.

Ответ оставил Гость

Учтём, что n! = 1*2*3*4*...*n;   (n+1) = 1*2*3*...*(n -1)*n*(n+1)
(n+1)! - (n+64)(n-1)! ≤ 0
(n -1)!(n(n+1) -(n+64)) ≤ 0
(n-1)!(n² + n - n - 64) ≤ 0
(n -1)! (n² - 64) ≤ 0
Понимаем, что (n -1)! ≥ 0, значит, n² - 64 ≤ 0
                                                         0 ≤ n ≤ 8

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.