Алгебра, опубликовано 2018-08-22 23:53:42 by Гость

Докажите что данное уравнение не имеет корней 11d^2=3a^2

Ответ оставил Гость

Пусть d и a - решения этого уравнения. Тогда их можно считать взаимно простыми, т.к. иначе можно разделить обе части на квадрат их наибольшего общего делителя.
Дальше. Мы видим, что правая часть обязательно делится на 11.Значит а² обязано делиться на 11, т.к.3 на 11 не делится. Так как 11 - простое число, то значит а делится на 11. Но значит вся правая часть делится на 11². Но значит и левая часть обязана делится на 11², а это значит что d² делится на 11. Т.е. и d делится  на 11. Т.е. получается что а и d не взаимно просты. Это противоречие.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.