Алгебра, опубликовано 2018-08-22 20:19:30 by Гость
Наименьшее целое решение неравенства х^3-3х^2-10х+24>0
Ответ оставил Гость
Решим уравнение x³-3*x²-10*x+24=0. Это уравнение является приведённым (коэффициент при x³ равен 1), поэтому корни уравнения могут быть среди целых делителей его свободного члена. т.е. среди чисел +1,-1,+2,-2,+3,-3,+4,-4,+6,-6,+8,-8,+12,-12,+24,-24. Подставляя эти числа в уравнение, находим, что x=2 является корнем уравнение. Разделив многочлен x³-3*x²-10*x+2 на двучлен x-2, получаем равенство x³-3*x²-10*x+24=(x-2)*(x²-x-12). Решая квадратное уравнение x²-x-12=0, находим его корни x=4 и x=-3. Значит, x²-x-12=(x+3)*(x-4) и x³-3*x²-10*x+24=(x-2)*(x+3)*(x-4). При x4 - больше 0. Значит, наименьшим целым решением неравенства является x=-2. Ответ: x=-2.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.
Форма вопроса доступна на