Алгебра, опубликовано 2018-08-22 21:53:09 by Гость

Помогите с алгеброй Доказать, что число 6^12 - 1 делится на 37 не просто возвести в 12 степень а разложить и т.д

Ответ оставил Гость

6^12 - 1 = (6^2)^6 - 1 = (36^6) - 1 = (36^3)^2 - 1 = (36^3 -1)*(36^3 + 1) = W,
36^3 + 1 = (36 + 1)*(36^2 - 36 + 1), поэтому
W = (36^3 - 1)*(36+1)*(36^2 - 36 + 1) = (36^3 -1)*37*(36^2 - 36 + 1).
отсюда видно, что
(6^12 - 1)/37 = (36^3 - 1)*(36^2 - 36+1), здесь справа стоит целое число, то есть (6^12 - 1) делится нацело на 37.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.