Физика, опубликовано 2018-08-22 13:32:10 by Гость

На гладкой горизонтальной поверхности стола покоится доска длиной L=192 см. С её концов во встречных направлениях одновременно толкают два одинаковых кубика с отличающимися в 3 раза начальными скоростями. Абсолютно неупругое соударение кубиков происходит в момент остановки одного из них. На каком расстоянии от левого конца доски прекратится скольжение по ней кубиков, если масса доски больше массы кубика в 6 раз? Ответ выразить в см, округлив до целых. Коэффициент трения кубиков о верхнюю поверхность доски всюду одинаков. Движение тел происходит в одной вертикальной плоскости. Размерами кубиков по сравнению с длиной доски пренебречь. Левый кубик имеет меньшую скорость. (хотя нет разницы, так?)

Ответ оставил Гость

Силы на них до встречи действуют одинаковые (массы равны) причём одинаковое время. Значит, потери импульса до встречи у них одинаковые. Стало быть, у изначально медленного кубика импульс будет НОЛЬ перед встречей, а у изначально быстрого – 2mv, где v и m – скорость и масса медленного кубика. В течение этого времени – на доску с двух сторон действуют одинаковые и противоположные ответные силы трения со стороны кубиков. Стало быть, в этом процессе доска в движение не приходит.

При этом квадрат скорости медленного кубика изменяется на v², а квадрат скорости быстрого кубика меняется на 5v², значит, пройденные ими расстояния относятся как 1:5, расстояние, пройденное медленным кубиком, составляет 1/6 от длины доски, и именно в эту сторону полетят слипающиеся кубики. Вся дальнейшая история будет разыгрываться на 1/6 доски.

Далее, у нас будет связка из двух кубиков 2m с импульсом 2mv, унаследованным от быстрого кубика. Т.е., после столкновения сдвоенный кубик будет двигаться со скоростью v в направлении от точки соединения к точке отправления медленного.

Вся конструкция 8m : 2 кубика – 2m и доска – 6m имеют импульс 2mv. Значит, центр масс конструкции движется со скоростью v/4.

Когда объединённые кубики остановятся относительно доски, их скорость как раз и будет равна скорости центра масс, как и скорость доски (у них возникнет относительный покой).

Отрицательное ускорение трения будет создаваться удвоенной силой трения (двойной вес) в расчёте на двойную массу сдвоенного кубика. А значит, отрицательное ускорение трения – будет таким же, как и у изначальных кубиков.

Значит, теперь кубики должны будут изменить квадрат скорости на [15/16]v², это произойдёт, когда они пройдут 15/16 от 1/6 длины доски, ОТНОСИТЕЛЬНО стола. Поскольку при изменении квадрата скорости на v² – проходится расстояние в 1/6 длины доски.

Вывод к моменту начала совмещённого движение кубиков и доски, кубики окажутся на 1/16-ой 1/6 длины доски от начала движения медленного кубика относительно стола. Т.е. кубики окажутся на 1/96-ой части длины всей доски от начала движения медленного кубика относительно стола.

В это время ответная сила трения будет действовать со стороны кубиков на доску. Поскольку масса доски 6m в 3 раза больше, чем масса сдвоенных кубиков, то ускорение доски окажется в три раза меньше. Доске нужно увеличить квадрат скорости от лабораторного покоя до v²/16. Если бы ускорение было бы такое же, как и кубиков, то доска бы проехала по столу на 1/16 от 1/6 своей длины. Но поскольку ускорение доски втрое меньше, то она проедет в этом процессе втрое дальше, а именно на 3/16 от 1/6 своей длины. Таким образом, она сместится на 3/96 своей длины, как бы убегая в сторону – от кубиков. Кубики не доедут до точки старта медленного 1/96 доски. А доска уедет от точки старта медленного на 3/96. Значит, кубики окажутся на 4/96 = 1/24 части от края доски.

192 * 1/24 = 8 см.

Теперь через формулы. Самая полезная формула равноускоренного движения тут:

2aS = ∆v² ;

До соударения, модули ускорений одинаковы, а поэтому скорость медленного к соударению – будет ноль, а быстрого – 2v вместо 3v :

2a Sм = v² ;      [1]

2a Sб = 9v²–4v² = 5v² ;      [2]

Ясно, что путь быстрого больше пути медленного в 5 раз.

Тогда, обозначив длину доски, как L, получим: 

Sм = L/6 ;        [3]

Sб = [5/6] L ;

Конечный импульс 2mv распределится на всех участников движения:

2mv = 8mu, где u – скорость движения центра масс.

u = v/4.

К моменту начала совмещённого движения (т.е. относительного покоя кубиков и доски) скорость кубиков должна стать v/4, так как импульс сохранится. Тоже касается и доски, тогда обозначая Sд и aд – путь и ускорение доски, а так же и Sк и aк – путь и ускорение сдвоенных кубиков, мы можем написать:

2 aд Sд = u² ;

2 aк Sк = v² – u² ;

2 aд Sд = v²/16 ;

2 aк Sк = [15/16]v² ;

aк = а, поскольку сдвоенные кубики с двойным весом испытывают вдвое большее трение.

aд = a/3, по Третьему Закону Ньютона, поскольку масса доски втрое больше массы сдвоенных кубиков.

2a Sд = 3v²/16 ;      [4]

2a Sк = [15/16]v² ;      [5]

Делим [4] на [1] и получаем:

Sд/Sм = 3/16 , через [3] :

Sд = [3/16] Sм = L/32 ;

Делим [5] на [1] и получаем:

Sк/Sм = 15/16 , через [3] :

Sк = [15/16] Sм = [5/32] L ;

Перед началом движения доски от соединённых кубиков до края L/6 и кубики летят к краю, а край от них уходит.

В итоге до края доски останется:

L/6 + L/32 – [5/32] L = ( 16/96 + 3/96 – 15/96 ) L = [4/96] L = L/24 = 192/24 = 8 см.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Физика.

Форма вопроса доступна на полной версии этой страницы.