Геометрия, опубликовано 2018-08-22 23:38:59 by Гость

Радиус вписанной окружности треугольника равен 1. Найдите наибольшее возможное значение наименьшей высоты треугольника.

Ответ оставил Гость

Пусть h1≤h2≤h3  - высоты треугольника (h1- наименьшая). Можно воспользоваться известным  соотношением: 1/r=1/h1+1/h2+1/h3. Отсюда 1/r≤3/h1, т.е. при r=1 получаем h1≤3. Это значение, очевидно достигается в равностороннем треугольнике. Т.е. ответ 3.

P.S. Доказать 1/r=1/h1+1/h2+1/h3 можно так: если h1, h2, h3 - высоты проведенные к сторонам а, b, c, то по формуле площади треугольника
1/h1=a/(2S), 1/h2=b/(2S), 1/h3=c/(2S), откуда 1/h1+1/h2+1/h3=(a+b+c)/(2S)=1/r, т.к. S=pr, где p - полупериметр.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.