Геометрия, опубликовано 2018-08-22 00:20:57 by Гость
Найдите объем треугольной пирамиды , у которой боковые ребра взаимно перпендикулярные и каждое из них равно a.
Ответ оставил Гость
Будем считать какую-нибудь боковую грань этой пирамиды основанием. Эта грань - равнобедренный прямоугольный треугольник c катетом а, и его площадь равна a²/2. Т.к. ребра перпендикулярны, то не принадлежащее этой грани ребро, перпендикулярное катетам нового основания, является высотой пирамиды. Т.е. ее объем равен (1/3)·a²/2·a=a³/6.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на