Геометрия, опубликовано 2018-08-22 01:33:49 by Гость
1.дано диагонали прямоугольника ABCD пересекаются в точке O.Найдите угол между диагоналями,если угол ABO=30 градусов 2. В параллелограмме KMNP проведена биссектриса угла MKP,которая пересекает сторону MN в точке E а)доказать что треугольник KME равнобедренный б)найти сторону KP,если ME=10см,а периметр параллелограмма равен 52см НУЖНО РЕШЕНИЕ
Ответ оставил Гость
1.Тр-к АВО-равнобедренный, т.к. диагонали прямоугольника точкой пересечения делятся пополам, следовательно в нём углы при основании равны. Каждый в 30 градусов. Т.о угол ВОА=180-30-30=120 градусов, а угол СОД=углу ВОА=120градусов. Угол ВОС=180-120=60гр.(смежные углы). Угол АОД=углуВОС=60гр.
2. а) Тр-к КМЕ равнобедренный, т.к. угол МЕК = 1/2 угла ЕКР (КЕ-биссектриса угла МКР). Если углы при основании тр-ка равны, то этот тр-к (КМЕ) равнобедренный и KM=ME=10 см.
б) Примем: EN=х.
Р=КМ+(МЕ+ЕN)+NP+KP= 10+(10+х)+10+(10+х)=40+2х=52см.
52=40+2х
х=6см.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на