Геометрия, опубликовано 2018-08-22 01:46:21 by Гость

В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади тре‐ угольника AKD.

Ответ оставил Гость

В треугольнике АВС отрезок ВК будет медианой))
про медиану известно:
медиана делит треугольник на два равных по площади)))
S(ABK) = S(CBK)
аналогично для второго треугольника:
S(CDK) = S(ADK)
а т.к. диагональ делит параллелограмм на два равных треугольника,
то S(ABC) = S(CDA),
следовательно, S(ABK) = S(CBK) = S(CDK) = S(ADK) = (1/4)*S(ABCD)
S(ABCD) = 4*S(ADK) = 4*S(ABK)

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.