Геометрия, опубликовано 2018-08-22 01:53:45 by Гость

Помагите решть задачу по геометрии: Прямая,проходящая через середину биссектрисы AD треугольника ABC и перпендекулярная к AD, пересекает сторону AC в точке M. Докажите, что MD||AB.

Ответ оставил Гость

Если Вы хотите, чтобы я обращал внимание на Ваши задачи, старайтесь не допускать грамматических ошибок. Слово помОгите пишется через О.
Решть - это не так страшно, тут я допускаю, что Вы торопились и пропустили букву И.

Пусть середина AD - точка О, а прямая OM пересекает AB в точке N.
Треугольник MAN - равнобедренный так как биссектриса и высота углв A совпали. Поэтому AO является еще и медианой, то есть MO=ON.
Значит, диагонали 4-угольника ANDM в точке пересечения делятся пополам ⇒это параллелограмм⇒AN║MD, что и требовалось доказать. Как бонус мы получаем, что ANDM - ромб, так как AN=AM

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.