Геометрия, опубликовано 2018-08-22 01:54:30 by Гость

1) Обчисліть обєм конуса, висота якого дорівнює 6 см, а твірна нахилена до площини основи під кутом 30°. 2) Знайдіть обєм конуса, радіус основи якого дорівнює 3 см, а твірна — √5

Ответ оставил Гость

Давай попробуем рассуждать логически

Раз высота конуса 6, а образующая наклонена под углом 30 градусов к плоскости основания, то радиус R основания получается
R = 6 / tg(30) = 6 * корень(3)
Знаем радиус - находим площадь основания
S = пи * R^2 = пи * 36 * 3    (пока не будем умножать 36 на 3, оставим в таком виде)
Всё имеем для вычисления объёма
V = 1/3 * S * H = 1/3 * пи * 36 * 3 * 6 = пи * 36 * 6 = 216 * пи = примерно 678,58 см3.

Вторая же задачка прикольная у тебя, если ты правильно переписала условие, конечно. Фишка тут в том, что образующая задана корень(5) - это примерно 2,23 см, а радиус основания задан 3 см. Такой конус не существует. У любого конуса длина образующей должна быть больше, чем радиус основания, а у тебя меньше. Если условие переписала правильно, то передавай привет учительнице.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.