Геометрия, опубликовано 2018-08-22 02:39:56 by Гость

Диаметр АВ и хорда CD окружности пересекаются под прямым углом. Вычислите радиус окружности , если угол CAD = 120 градусов и CD=8 СМ

Ответ оставил Гость

В окружности вписанный угол равен половине соответствующего ему центрального угла. 
Внешний развёрнутый ∠СОД(р)=2∠САД=240°, значит внутренний ∠СОД=360-240=120°.
В тр-ке СДА СА=ДА, значит ∠СДА=∠ДСА=(180-∠САД )/2=30°.
Аналогично в тр-ке СДО ∠СДО=∠ДСО=30°.
∠ОСА=60°, ∠САО=∠САД/2=60°, значит тр-ник СОА правильный.
Пусть АВ и СД пересекаются в точке М, тогда СМ - высота тр-ка СОА. СМ=СД/2=4 см.
Высота правильного тр-ка: h=a√3/2 ⇒ a=2h/√3, значит ОС=2СМ/√3,
R=ОС=8/√3=8√3/3 см.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.