Геометрия, опубликовано 2018-08-22 03:35:27 by Гость

Дан параллелограмм abcd на сторонах выбраны точки m, n, p, q таким образом, что каждая из них лежит в середине соответствующей стороны. докажите, что mnpq параллелограмм.

Ответ оставил Гость

Если провести в параллелограмме диагонали ac и bd , то каждая из них разделит параллелограмм на два треугольника. Отрезки mn, np, pq и mq являются средними линиями в соответствующих тр-ках. Средние линии треугольников параллельны основаниям (диагоналям параллелограмма), значит mn║pq и np║mq.
Так как треугольники, разделённые диагональю равны (свойство параллелограмма), то и полученные параллельные отрезки равны, следовательно nmpq - параллелограмм.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.