Геометрия, опубликовано 2018-08-22 04:15:38 by Гость

В треугольнике MNK равны стороны МN и МК. на стороне МN взята точка А. через точку А проведена прямая, параллельная NK, которая пересекает сторону МК в точке В. докажите, что треугольник МАВ—равнобедренный.

Ответ оставил Гость

Доказательство:
1)ΔMNK - равнобедренный (т.к. MN=MK)
   значит ∠MNK=∠MKN
2)AB║NK (По условию)
3)∠ABM=∠MKN (Соответственные при AB║NK и секущей MK)
   ∠BAM=∠MNK (Соответственные при AB║NK и секущей MN)
   Значит ∠ABM=∠BAM
4)ΔMAB - равнобедренный (По признаку одинаковых углов треугольника)
ЧТД

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.