Геометрия, опубликовано 2018-08-22 04:15:53 by Гость
В тетраэдре DABC в основании лежит правильный треугольник ABC, O- точка пересечения биссектрис этого треугольника,AD=BD=CD,
Ответ оставил Гость
АВСД-это правильная треугольная пирамида(смотри рисунок). В основании правильный треугольник. Значит точка О является одновременно точкой пересечения медиан, высот и биссектрис треугольника основания. А поскольку боковые рёбра по условию равны, то они имеют одинаковый наклон к основанию и опущенная из вершины пирамиды высота ДО приходит в эту точку О. Проводим апофему ДК. Получим прямоугольный треугольник АКД, поскольку ДАВ=45 по условию, то и АДК=45, отсюда АК=ДК. В точке пересечения медианы делятся в отношении 2/1 считая от вершины. По теореме Пифагора находим Н, потом ребро ДС и cosДАО=корень из2/корень из 3.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на