Геометрия, опубликовано 2018-08-22 04:23:18 by Гость
Как найти высоту и площадь треугольника, если известно , чтоАВ=ВС=41см , АС=18см.
Ответ оставил Гость
Пусть АВ1=Х, ВВ1-биссектриса, тогда выполняется пропорция АВ/ВС=АВ1/В1С, или 13/15=X/14-X. Отсюда Х=6,5. Пусть АН=У. Тогда по теореме Пифагора АВквадрат-АНквадрат=ВСквадрат-СНквадрат, то есть 169-Уквадрат=225-(14-У)квадрат, 169-Уквадрат=225-196+28У-Уквадрат, У=5. Тогда высота треугольника АВС равна ВН=корень из(АВквадрат-АНквадрат)=корень из(169-25)=12. НВ1=АВ1-АН=6,5-5=1,5. Тогда искомая площадь Sвв1н=1/2*НВ1*ВН=1/2*1,5*12=9.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на