Геометрия, опубликовано 2018-08-22 05:00:12 by Гость
На окружности радиуса R последовательно отмечены точки A,B,C и D так, что величины дуг AB и BC равны соответственно 50° и 80°, а диагонали четырехугольника ABCD равны между собой. Найдите длину наибольшей стороны этого четырехугольника.
Ответ оставил Гость
Так как диагонали равны, то это может быть прямоугольник или равнобедренная трапеция. Тогда дуга АД, стягивающая наибольшую сторону АД будет = 360 - (50 + 80 + 50) = 180 гр. То есть АД - диаметр описанной окружности. То есть АД = 2R.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на