Геометрия, опубликовано 2018-08-22 07:39:54 by Гость
На основаниях AD и BC трапеции ABCD построены квадраты через неё, докажите, что прямая, проходящая через центры квадратов проходит через точку пересечения диагоналей трапеции.
Ответ оставил Гость
Пусть О₁ и O₂ - центры квадратов построенных на BC и AD соответственно, О - точка пересечения диагоналей трапеции, О - точка пересечения AC и O₁O₂. Докажем, что О совпадает с О.
1) O₁C||O₂A, т.к. ∠O₁CA=45°+∠BCA, ∠O₂AC=45°+∠DAC, ∠DAC=∠BCA, т.е. внутр. накрест лежащие углы ∠O₁CA и ∠O₂AС равны.
2) Значит треугольники O₁CO и O₂AO подобны (по двум углам), т.е.
CO/AO=CO₁/AO₂=(BC/√2)/(AD/√2)=BC/AD.
3) Но О тоже делит AC в отношении BC/AD, т.к. треугольники BCO и DAO подобны. Значит O совпадает с O.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на