Геометрия, опубликовано 2018-08-22 07:52:23 by Гость

В правильній трикутній піраміді апофема = 17 а виста 15. Знайдіть площу бічної поверхні піраміди

Ответ оставил Гость

В правильной треугольной пирамиде отрезок, соединяющий основания апофемы и высоты, равен радиусу окружности, вписанной в основание пирамиды.
r²=l²-h², где l - апофема, h - высота,
r²=17²-15²=64,
r=8.
В правильном тр-ке радиус вписанной окружности равен: r=a√3/6 ⇔ a=6r/√3=2r√3=2·8√3=16√3. a - сторона правильного тр-ка (сторона основания пирамиды).
Площадь боковой поверхности: S=3al/2=3·16√3·17/2=408√3 (ед²).

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.