Геометрия, опубликовано 2018-08-22 08:33:23 by Гость

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны. Оказалось, что отрезки BD и BE тоже равны. Докажите, что треугольник АВС — равнобедренный

Ответ оставил Гость

1) По условию задачи BD=BE, следовательно треугольник BDE - равнобедренный (поопределению). По свойству равнобедренного треугольника /BDE=/BED. Смежные им углы тоже равны, /BDA=/BEC.
2) Рассмотрим треугольники ABD и CBE.
AD=CE (по условию),
BD=BE (По условию),
/BDA=/BEC (из п.1),
следовательно эти треугольники равны (по первому признаку равенства треугольников), а это значит, что BA=BC. Следовательно треугольник ABC - равнобедренный (по определению).

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.