Геометрия, опубликовано 2018-08-22 09:10:40 by Гость

Задача. Две окружности различных радиусов с центрами О и М пересекаются в точках А и В. Докажите , что угол ОАМ равен углу ОВМ. 99 балов

Ответ оставил Гость

При пересечении данных окружностей образуются треугольники OAB и ABM.
Треугольник AOB-равнобедренный, т.к. OB=AO как радиусы, следовательно угол OAB=углу OBA
Аналогично с треугольником ABM: AM=BM, следовательно угол MAB=углу MBA
Следовательно угол OAM= углу OBM

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.