Доказать что три вектора компланарны тогда и только тогда, когда они лежат на прямых, параллельных одной плоскости
Линейная зависимость векторов, линейная независимость векторов, базис векторови др. термины имеют не только геометрическую интерпретацию, но, прежде всего,алгебраический смысл. Само понятие «вектор» с точки зрения линейной алгебры – это далеко не всегда тот «обычный» вектор, который мы можем изобразить на плоскости или в пространстве. За доказательством далеко ходить не нужно, попробуйте нарисовать вектор пятимерного пространства . Или вектор погоды, за которым я только что сходил на Гисметео: – температура и атмосферное давление соответственно. Пример, конечно, некорректен с точки зрения свойств векторного пространства, но, тем не менее, никто не запрещает формализовать данные параметры вектором. Дыхание осени….
Форма вопроса доступна на