Геометрия, опубликовано 2018-08-22 11:09:31 by Гость
В равнобедренном треугольнике КLM,на основании КМ указана точка Р,От этой точки проведены перпендикулярны к двум боковым сторонам,соответственно РА и РВ, Докажите что LP -биссектриса треугольника КLM если КА=МВ
Ответ оставил Гость
KL = LM - т.к. ∆KLM - равнобедренным
AL = KL - KA
LB = LM - BM
AK = BM
Значит, AL = LB.
Рассмотрим ∆KAP и ∆MBP
∠LKM = ∠LMK - как углы при основании равнобедренного треугольника
AK = BM
∠KAP = ∠MBP = 90°.
Значит, ∆PAK = ∆PBM - по II признаку.
Из равенства треугольников => AP = PB
AL = LB
LP - общая
Значит, ∆LAP = ∆LBP - по III признаку.
Из равенства треугольников => ∠KLP = ∠MPL. Значит, LP - биссектриса угла KLM.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на