Геометрия, опубликовано 2018-08-22 11:41:25 by Гость
Радиус круга описанного вокруг правильного многоугольника, равен 6√3 см, а радиус вписанной в него окружности—9см. Сколько сторон имеет. многоугольник???
Ответ оставил Гость
Так как многоугольник правильный ⇒ центры вписанной и описанной
окружности общее, обозначим центр буквой О. Берем произвольный сектор АОВ ; С точка касания вписанной окружности с АВ ⇒
R = OA = 6√3 ; r = OC = 9
OC : OA = r : R = Cos(∠AOC)
Cos(∠AOC) = 9 : 6√3 = √3/2 ⇒
∠AOC = 30° ⇒ ∠AOB = 60° = 1/6 · 360° ⇒
Многоугольник - шестиугольник.
Ответ 6
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на