Геометрия, опубликовано 2018-08-22 12:46:23 by Гость

Докажите, что если центр вписанной окружности треугольника принадлежит его высоте, то этот треугольник-равнобедренный.

Ответ оставил Гость

Центр O вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника. Так как центр лежит на медиане, значит медиана является и биссектрисой. Проведем медианы из других углов. Все медианы пересекаются в центре окружности значит треугольник равнобедренный.Если он при этом лежит и на медиане, то треугольник как минимум равнобедренный. В равнобедренном треугольнике биссектриса, медиана и высота проведенные к основанию совпадают

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.