Геометрия, опубликовано 2018-08-22 13:23:50 by Гость

Как доказать, что треугольник равнобедренный

Ответ оставил Гость

Доказательство

Пусть Δ  ABC – равнобедренный с основанием AB , и CD – медиана, проведенная к основанию. В треугольниках CAD и CBD углы CAD и CBDравны, как углы при основании равнобедренного треугольника стороны AC и BC равны по определению равнобедренного треугольника, стороны AD и BD равны, потому что D – середина отрезкаAB . Отсюда получаем, что Δ  ACD  = Δ  BCD .

Из равенства треугольников следует равенство соответствующих углов: ACD  =   BCD ,   ADC  =   BDC . Из первого равенства следует, что CD – биссектриса. Углы ADC и BDC смежные, и в силу второго равенства они прямые, поэтому CD – высота треугольника. Теорема доказана.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.