Геометрия, опубликовано 2018-08-22 15:00:10 by Гость

Помогите, пожалуйста! Геометрия Из точки А вне окружности, на 10 см удалённой от центра окружности, проведена секущая, пересекающая окружность в точках В и С, причём АВ=4 см, а ВС=5 см. Найдите диаметр окружности.

Ответ оставил Гость

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть.
В нашем случае:
Первая секущая равна АС=9см и ее внешняя часть АВ=4см.
Вторая секущая, проходящая через диаметр, равна (АО+R)см и ее внешняя часть равна (АО+R-2R)=(AO-R)см. Тогда
9*4=(10+R)(10-R)
36=100-R² или
R²=64см².
R=8см. Это ответ.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.