Геометрия, опубликовано 2018-08-22 15:44:13 by Гость
Найдите тупой угол ромба, если его сторона равна среднепропорцианальному значению диагоналей
Ответ оставил Гость
Если обозначить диагонали ромба (х) и (у), то условие запишется:
a² = x*y
из прямоугольного треугольника, образованного диагоналями ромба,
(известно, что диагонали ромба взаимно перпендикулярны)))
по т.Пифагора можно записать:
a² = (x/2)² + (y/2)²
--->>
x² + y² = 4xy
(x/y)² - 4(x/y) + 1 = 0 D=16-4=12
(x/y) = 2-√3 или (x/y) = 2+√3
найденное отношение --это тангенс половины искомого угла...
меньшее выражение --тангенс острого угла (тангенс монотонно возрастает на всей области определения)))
tg(α/2) = 2+√3
tg(α) = 2*tg(α/2) / (1-tg²(α/2))
tg(α) = 2(2+√3) / (-2*(3+2√3)) = -(2+√3) / (3+2√3) = -(2+√3)(3-2√3) / (-3)
tg(α) = -√3 / 3 --->> α = 150°
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на