Геометрия, опубликовано 2018-08-22 17:51:31 by Гость

Два прямоугольных треугольника имеют по равному острому углу, а их площади относятся как 9:4 . Найдите гипотенузу меньшего треугольника, если гипотенуза большего треугольника равна 6.

Ответ оставил Гость

Если у п/у треугольников по 1 углу равны (острому), то они подобны, значит, их катеты относятся так же как гипотенузы, отношение это равно коэффициенту подобия. отношение площадей = к^2 ( к - коэффициент подобия), отсюда: (6 / х)^2 = 9 / 4, х = 4.
понятно объяснила?

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.