Геометрия, опубликовано 2018-08-22 17:59:52 by Гость

Нужно из формулы радиуса вписанной окружности для произвольного треугольника: r=1/p * √p(p-a)(p-b)(p-c) вывести формулу для радиуса окружности вписанной в прямоугольный треугольник: r=(a+b-c)/2.

Ответ оставил Гость

Радиус окоужности, вписанной в произвольный треугольник: r=1/p×/|(p (p-a)(p-b)(p-c)). Итак, r=1/p×/|S. Поскольку S прямоугольного треугольника равно полупроизведению катетов, получается S=ab/2. Тогда r=1/p×ab/2. p= (a+b+c)/2. r=2/(a+b+c)=ab/2. r=ab/(a+b+c)=(a+b-c)/2, что и нужно было доказать.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.