Геометрия, опубликовано 2018-08-22 18:18:28 by Гость
Диагональ AC трапеции ABCD делит её на два подобных треугольника найдите площадь трапеции если AB=25см BC=20см AC=15см
Ответ оставил Гость
Определяем параметры треугольника АВС, как части трапеции.
Сумма квадратов сторон ВС и АС равна 400+225 = 625.
Квадрат стороны АВ равен 25² = 625. Значит, треугольник АВС прямоугольный с катетами ВС и АС и гипотенузой АВ и прямым углом ВСА.
Чтобы треугольник второй части трапеции был подобен первому, значит, в нём угол Д должен быть прямым.
Угол АСД равен углу ВАС.
Синус этого же угла равен sinACD = √(1-0,6²) = 0,8.
Находим стороны:
СД = 15*0,6 = 9 см,
АД = 15*0,8 = 12 см.
Сторона АД является и высотой трапеции АВСД.
S = ((25+9)/2)*12 = 17*12 = 204 см².
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на