Геометрия, опубликовано 2018-08-22 19:14:41 by Гость

Основания равнобокой трапеции равны 10 и 20 см, а диагональ является биссектрисой её тупого угла. Вычеслите площадь трапеции

Ответ оставил Гость

Выполним рисунок к задаче. Чертим трапецию АВСD, у которой ВС=10, АD=20. Биссектриса ВD Делит угол АВС пополам. Проводим ВК перпендикулярно к АD. ВК  высота трапеции. Вычисляем АК = (20-10):2=5. Угол СВК равен углу АDВ (внутренние разносторонние при параллельных ВС и АD и секущей ВD). Треугольник ВD равнобедрен-ный (угол АВD равен углу АDВ). Значит АВ=АD=20.
Рассмотрим треугольник АВК. По теореме Пифагора ВК²=АВ²-АК²=400-25=375. ВК=5√7. Вычислим площадь трапеции.
S=0,5·(10+20)·5√7=75√7 (см²).

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.