Геометрия, опубликовано 2018-08-22 20:25:02 by Гость
В равнобедренном треугольнике МNK точка D - середина основания МК, DA и DB -перпендикуляры к боковым сторонам. Доказать, что угол ADN = углу BDN
Ответ оставил Гость
1)В тр-ке MNK D - середина MK, значит ND - медиана. По свойству медианы в равнобедренном треугольнике ND - высота, значит ∠ NDK = ∠NDM = 90°.
2) D - середина MK, значит MD=DK. Во свойству углов равнобедренного треугольника ∠NMD = ∠BKD. По условию ∠MAD=∠DBK=90°, значит прямоугольные треугольники DBK и ADM равны по гипотенузе и острому углу.
3)В равных треугольниках соответственные элементы равны, значит ∠ADN = ∠ BDN. Теорема доказана.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на