Геометрия, опубликовано 2018-08-22 21:06:46 by Гость
ДАЮ 85 БАЛЛОВ ЗА ЗАДАНИЕ! С РАСПИСАНИЕ ЧТО КАК ГДЕ С точки к прямой проведено две наклонные, длины которых равны 13 см и 15 см.Найдите расстояние от точки до прямой, если разность проекций наклонных на эту прямую равна 4 см.
Ответ оставил Гость
Расстояние от точки до прямой - это перпендикуляр (обозначим, напр., h),т.е. получаем два прямоугольных треугольника с гипотенузами 13 и 15 см, один катет общий(этот перпендикуляр) и два катета: там, где наклонная (гипотенуза) 15 см, обозначим х см, там, где наклонная 13 см катет равен х-4 (меньше наклонная - меньше проекция), составляем уравнения по т. Пифагора:
h² = 15²-x² (для одного треугольника)
h² = 13²-(x-4)² (для другого треугольника)
⇒15²-x² = 13²-(x-4)²
225-х² =169-х²+8х+16
8х=56+16
8х=72
х=9
х-4=5
находим расстояние: h²=13²-5²=144, h=12
ответ: 12 см
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на