Геометрия, опубликовано 2018-08-22 21:10:03 by Гость

Катеты прямоугольного треугольника равны 3 и 4. окружность, проходящая через середины гипотенузы и меньшего катета, касается другого катета. Найдите длину хорды этой окружности, высекаемой на гипотенузе

Ответ оставил Гость

Я даже хотел рисунок сделать, но потом передумал.
Итак -
Треугольник ABC, CB = 3; CA = 4; AB = 5;
M - середина CB, N - середина AB;
(кому напомнить, что  MN = 2; и MN II AC?);
 По условию, MN - хорда окружности, которая касается AC;
поэтому центр окружности O и точка касания K лежат на перпендикуляре к MN в его середине.
То есть CK = 1; AK = 4 - 1 = 3;
По условию, окружность  пересекает гипотенузу AB в точке N и еще в одной, которую я обозначу P. Нужно найти x = NP.
Заранее не ясно, лежит точка P ближе к A или к B. Пусть (я предположу), что к B.
Тогда AK^2 = AN*AP;
3^2 = 2,5*(2,5 + x);
x = 11/10 = 1,1;
Если допустить, что P лежит ближе к A, то x получится отрицательным. То есть полученный ответ - единственный.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.