Геометрия, опубликовано 2018-08-22 21:59:39 by Гость

Вычислите радиус описанного около равнобедренной трапеции круга, если тупой угол трапеции равен 120 °, а диагональ является бисектрисой острого угла и равна 3√3 см.

Ответ оставил Гость

В трапеции АВСД  с диагональю АС ∠ВАС=∠САД. ∠АВС=120°, АС=3√3 см.
∠ВАД=180-∠АВС=180-120=60°,
∠САД=60/2=30°.
В тр-ке АСД ∠СДА=60°, ∠АСД=180-30-60=90°.
Окружность, описанная около тр-ка АСД и около трапеции АВСД одна и та же. Гипотенуза прямоугольного тр-ка АСД является диаметром описанной около него окружности, значит R=АД/2.
АД=АС/cos30=3√3/(√3/2)=6 cм.
R=6/2=3 cм - это ответ.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.