Геометрия, опубликовано 2018-08-22 22:27:25 by Гость

Стороны треугольника равны 17 м, 10 м, 9 м. Вычисли наибольшую высоту этого треугольника. Наибольшая высота равна м Дополнительные вопросы: 1. Какие формулы площади треугольника используются в решении задачи? SΔ=a⋅ha2 SΔ=p(p−a)(p−b)(p−c)−−−−−−−−−−−−−−−−−√ SΔ=a⋅b⋅sinγ2 SΔ=a23√4 2. Чему равна площадь треугольника? м2 3. Какое высказывание верное? В треугольнике наибольшая та высота, которая проведена к наибольшей стороне. В треугольнике наибольшая та высота, которая проведена к наименьшей стороне Ответить!

Ответ оставил Гость

Используем формулу Герона.
p = (a + b + с)/2 = (17 + 10 + 9)/2 =  18
S = √(p(p - a)(p - b)(p - c)) = √(18(18 - 17)(18 - 10)(18 - 9)) = √(18·1·8·9) = √1296 = 36 м².
Высота, проведённая к наименьшей стороне треугольника, является наибольшей.
S=a
·h/2 ⇒ h=2S/a=2·36/9=8 м  - это ответ.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.