Геометрия, опубликовано 2018-08-22 23:07:42 by Гость

Окружность вписанная в треугольник ABC касается его сторон AB и AC соответственно в точках M и N. докажите, что BN>MN

Ответ оставил Гость

Пусть h - высота проведенная к AC и r - радиус вписанной окружности.
1) MN≤2r, т.к. хорда всегда не превосходит диаметр.
2) По формуле S=pr получим (AB+BC+AC)·r=AC·h, откуда h=((AB+BC)/AC+1)·r>2r, т.к. по неравенству треугольника AB+BC>AC.
3) BN≥h, т.к. гипотенуза больше катета.
Итак, BN≥h>2r≥MN.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.