Геометрия, опубликовано 2018-08-22 23:32:40 by Гость

Боковые стороны AB и CD трапеции ABCD равны соответственно 8 и 15, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.

Ответ оставил Гость

Т.к. биссектриса проходит через середину стороны AB, то если провести отрезок через эту точку, параллельный основаниям, то он будет является средней линией. Обозначим среднюю линию MN, где M принадлежит AB, а N принадлежит CD. Рассмотрим треугольник MND. Угол NMD = ADM - как накрест лежащие. Угол ADN = углу MDC - по условию (т.к. MD - биссектриса). Тогда угол MDC = углу DMN и тогда треугольник MND - равнобедренный, откуда следует, что MN=ND - как боковые стороны => MN = 7,5. Известно, что средняя линия равна полусумме оснований, тогда их суммеа равна 15. Известно, что меньшее основание равно 3, тогда большее равно 15-3 = 12. По формуле S= (a+b)/2*√(c²-((b-a)²+c²-d²)/2(b-a))²), где a - CD, b - AD, c - AВ, d - CD. Подставим в эту формулу найденные значения: 7,5*√(64-((12-3)²+64-225)/2(12-3)²) ≈ 61 см²...

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.