Геометрия, опубликовано 2018-08-22 00:31:13 by Гость
Правильный многоугольник при повороте относительно своего центра на угол 84градусов переходит сам в себя. Какое наименьшее число сторон может иметь такой многоугольник? Помогите пожалуйста!!
Ответ оставил Гость
Чтобы многоугольник при повороте 84° переходил сам в себя нужно, чтобы градусная мера того количества секторов, на которые будет совершён поворот, совпадала с самим углом поворота. Совершенно очевидно, что если разбить окружность на 360 секторов, получив трёхсотшестидесятиугольник и провернуть его 84°, многоугольник совпадёт. Теперь нужно сократить количество секторов. Для этого сократим отношение количества градусов поворота к количеству градусов в окружности.
84:360=42:180=21:90=7:30.
Больше сократить нельзя. Это значит, что при повороте тридцатиугольника на 84° проскочат 7 секторов и он совпадёт.
Проверка: 360°/30*7=84°.
Ответ. 30 сторон.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на