Математика, опубликовано 2018-08-22 23:51:11 by Гость

Равнобедренная тропеция с основанием 2 и 3 см и острым углом 60° вращается вокруг меньшего основания. найдите обьем полученой фигуры вращения

Ответ оставил Гость

Если трапецию вращать вокруг меньшего основания,  получится следующее тело вращения: цилиндр, у которого нет снизу и сверху конусика.
объем тела:
V(тела вращения) =V(цилиндра) -2*V(конусиков)
объем цилинра=pi*R*R*H
объем конуса=(1/3)*pi*R*R*H
V(тела вращения) =pi*R*R*H - (2/3)*pi*R*R*H
так... пусть изначально у нас была трапеция ABCD.AB=2, DC=3..из точки А опустим высоту на CD...назовем  ее AH..угол ADC=60 градусов.... угол DAH будет 30..т. е. получается, что DH=1/2 AD...DH=0.5...тогда AD=1...по теореме Пифагора AH=корень из 3 пополам... AH=R=(3^1/2)/2
V(тела вращения) =pi*3/4*4 - (2/3)*pi*(3/4)*0.5=2.75 *pi

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Математика.

Форма вопроса доступна на полной версии этой страницы.